Wednesday, July 7, 2010

Adding control to arbitrary quantum operations

Xiao-Qi Zhou, Timothy C. Ralph, Pruet Kalasuwan, Mian Zhang, Alberto Peruzzo, Benjamin P. Lanyon, Jeremy L. O'Brien

Quantum computers promise exponential power for particular tasks, however, the complexity of quantum algorithms remains a major technological challenge. We have developed and demonstrated an architecture independent technique for adding control qubits to arbitrary quantum operations (unitary or otherwise) - a key requirement in many quantum algorithms. The technique is independent of how the operation is done and does not even require knowledge of what the operation is. In this way the technical problems of how to implement a quantum operation and how to add a control are separated. The number of computational resources required is independent of the depth of the operation and increases only linearly with the number of qubits on which it acts. Our approach will significantly reduce the complexity of quantum computations such as Shor's factoring algorithm and the near-term prospect of quantum simulations. We use this new approach to implement a number of two-qubit photonic quantum gates in which the operation of the control circuit is completed independent of the choice of quantum operation.

No comments:

Post a Comment