Friday, December 2, 2011

Spin–orbit-coupled Bose–Einstein condensates

Y.-J. Lin, K. Jiménez-García & I. B. Spielman

Spin–orbit (SO) coupling—the interaction between a quantum particle’s spin and its momentum—is ubiquitous in physical systems. In condensed matter systems, SO coupling is crucial for the spin-Hall effect and topological insulators; it contributes to the electronic properties of materials such as GaAs, and is important for spintronic devices. Quantum many-body systems of ultracold atoms can be precisely controlled experimentally, and would therefore seem to provide an ideal platform on which to study SO coupling. Although an atom’s intrinsic SO coupling affects its electronic structure, it does not lead to coupling between the spin and the centre-of-mass motion of the atom. Here, we engineer SO coupling (with equal Rashba and Dresselhaus strengths) in a neutral atomic Bose–Einstein condensate by dressing two atomic spin states with a pair of lasers. Such coupling has not been realized previously for ultracold atomic gases, or indeed any bosonic system. Furthermore, in the presence of the laser coupling, the interactions between the two dressed atomic spin states are modified, driving a quantum phase transition from a spatially spin-mixed state (lasers off) to a phase-separated state (above a critical laser intensity). We develop a many-body theory that provides quantitative agreement with the observed location of the transition. The engineered SO coupling—equally applicable for bosons and fermions—sets the stage for the realization of topological insulators in fermionic neutral atom systems.

Friday, November 25, 2011

The quantum state cannot be interpreted statistically

Matthew F. Pusey, Jonathan Barrett, Terry Rudolph

Quantum states are the key mathematical objects in quantum theory. It is therefore surprising that physicists have been unable to agree on what a quantum state represents. There are at least two opposing schools of thought, each almost as old as quantum theory itself. One is that a pure state is a physical property of system, much like position and momentum in classical mechanics. Another is that even a pure state has only a statistical significance, akin to a probability distribution in statistical mechanics. Here we show that, given only very mild assumptions, the statistical interpretation of the quantum state is inconsistent with the predictions of quantum theory. This result holds even in the presence of small amounts of experimental noise, and is therefore amenable to experimental test using present or near-future technology. If the predictions of quantum theory are confirmed, such a test would show that distinct quantum states must correspond to physically distinct states of reality.

Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction

Nanfang Yu, Patrice Genevet, Mikhail A. Kats, Francesco Aieta, Jean-Philippe Tetienne, Federico Capasso, Zeno Gaburro

Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

Exploring Symmetry Breaking at the Dicke Quantum Phase Transition

K. Baumann, R. Mottl, F. Brennecke, and T. Esslinger

We study symmetry breaking at the Dicke quantum phase transition by coupling a motional degree of freedom of a Bose-Einstein condensate to the field of an optical cavity. Using an optical heterodyne detection scheme, we observe symmetry breaking in real time and distinguish the two superradiant phases. We explore the process of symmetry breaking in the presence of a small symmetry-breaking field and study its dependence on the rate at which the critical point is crossed. Coherent switching between the two ordered phases is demonstrated.

Thursday, November 3, 2011

Unconditional room-temperature quantum memory

M. Hosseini, G. Campbell, B. M. Sparkes, P. K. Lam & B. C. Buchler

Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionizing computation and communication is therefore driving significant research into developing optical quantum memory. A practical optical quantum memory must be able to store and recall quantum states on demand with high efficiency and low noise. Ideally, the platform for the memory would also be simple and inexpensive. Here, we present a complete tomographic reconstruction of quantum states that have been stored in the ground states of rubidium in a vapour cell operating at around 80°C. Without conditional measurements, we show recall fidelity up to 98% for coherent pulses containing around one photon. To unambiguously verify that our memory beats the quantum no-cloning limit we employ state-independent verification using conditional variance and signal-transfer coefficients.

Monday, October 24, 2011

Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond

Xiaobo Zhu, Shiro Saito, Alexander Kemp, Kosuke Kakuyanagi, Shin-ichi Karimoto, Hayato Nakano, William J. Munro, Yasuhiro Tokura, Mark S. Everitt, Kae Nemoto, Makoto Kasu, Norikazu Mizuochi & Kouichi Semba

During the past decade, research into superconducting quantum bits (qubits) based on Josephson junctions has made rapid progress. Many foundational experiments have been performed, and superconducting qubits are now considered one of the most promising systems for quantum information processing. However, the experimentally reported coherence times are likely to be insufficient for future large-scale quantum computation. A natural solution to this problem is a dedicated engineered quantum memory based on atomic and molecular systems. The question of whether coherent quantum coupling is possible between such natural systems and a single macroscopic artificial atom has attracted considerable attention since the first demonstration of macroscopic quantum coherence in Josephson junction circuits. Here we report evidence of coherent strong coupling between a single macroscopic superconducting artificial atom (a flux qubit) and an ensemble of electron spins in the form of nitrogen–vacancy colour centres in diamond. Furthermore, we have observed coherent exchange of a single quantum of energy between a flux qubit and a macroscopic ensemble consisting of about 3 × 10^7 such colour centres. This provides a foundation for future quantum memories and hybrid devices coupling microwave and optical systems.

Thursday, October 13, 2011

Cavity-Enhanced Frequency Comb Spectroscopy

A. Foltynowicz, T. Ban, P. Maslowski, F. Adler, J. Ye

What happens when you combine a frequency comb with a cavity


How Jun Ye knows if you're a smoker

Wednesday, October 12, 2011

Non-Hermitian Quantum Mechanics

Y. Choi, S. Kang, S. Lim, W. Kim, J-R. Kim, J-H. Lee, K. An

We report the first direct observation of an exceptional point (EP) in an open quantum composite of a single atom and a high-Q cavity mode. The atom-cavity coupling constant was made a continuous variable by utilizing the multisublevel nature of a single rubidium atom when it is optimally coupled to the cavity mode. The spectroscopic properties of quasieigenstates of the atom-cavity composite were experimentally investigated near the EP. Branch-point singularity of quasieigenenergies was observed and its 4π symmetry was demonstrated. Consequently, the cavity transmission at the quasieigenstate was observed to exhibit a critical behavior at the EP.

Interaction-induced orbital excitation blockade of ultracold atoms in an optical lattice

W. S. Bakr, P. M. Preiss, M. E. Tai, R. Ma, J. Simon, M. Greiner

Interaction blockade occurs when strong interactions in a confined few-body system prevent a particle from occupying an otherwise accessible quantum state. Blockade phenomena reveal the underlying granular nature of quantum systems and allow the detection and manipulation of the constituent particles, whether they are electrons, spins, atoms, or photons. The diverse applications range from single-electron transistors based on electronic Coulomb blockade to quantum logic gates in Rydberg atoms. We have observed a new kind of interaction blockade in transferring ultracold atoms between orbitals in an optical lattice. In this system, atoms on the same lattice site undergo coherent collisions described by a contact interaction whose strength depends strongly on the orbital wavefunctions of the atoms. We induce coherent orbital excitations by modulating the lattice depth and observe a staircase-type excitation behavior as we cross the interaction-split resonances by tuning the modulation frequency. As an application of orbital excitation blockade (OEB), we demonstrate a novel algorithmic route for cooling quantum gases. Our realization of algorithmic cooling utilizes a sequence of reversible OEB-based quantum operations that isolate the entropy in one part of the system, followed by an irreversible step that removes the entropy from the gas. This work opens the door to cooling quantum gases down to ultralow entropies, with implications for developing a microscopic understanding of strongly correlated electron systems that can be simulated in optical lattices. In addition, the close analogy between OEB and dipole blockade in Rydberg atoms provides a roadmap for the implementation of two-qubit gates in a quantum computing architecture with natural scalability.

Wednesday, October 5, 2011

Universal Digital Quantum Simulation with Trapped Ions

B. P. Lanyon, C. Hempel, D. Nigg, M. Müller, R. Gerritsma, F. Zähringer, P. Schindler, J. T. Barreiro, M. Rambach, G. Kirchmair, M. Hennrich, P. Zoller, R. Blatt, C. F. Roos

A digital quantum simulator is an envisioned quantum device that can be programmed to efficiently simulate any other local system. We demonstrate and investigate the digital approach to quantum simulation in a system of trapped ions. Using sequences of up to 100 gates and 6 qubits, the full time dynamics of a range of spin systems are digitally simulated. Interactions beyond those naturally present in our simulator are accurately reproduced and quantitative bounds are provided for the overall simulation quality. Our results demonstrate the key principles of digital quantum simulation and provide evidence that the level of control required for a full-scale device is within reach.

Monday, September 26, 2011

Atoms in Optical Fibers

Summary of several papers, including:

Kasturi Saha, Vivek Vankataraman, Pablo Londero, and Alexander L. Gaeta

We show that two-photon absorption (TPA) in rubidium atoms can be greatly enhanced by the use of a hollow-core photonic-band-gap fiber. We investigate off-resonant, degenerate Doppler-free TPA on the 5S1/2→5D5/2 transition and observe 1% absorption of a pump beam with a total power of only 1 mW in the fiber. These results are verified by measuring the amount of emitted blue fluorescence and are consistent with the theoretical predictions which indicate that transit-time effects play an important role in determining the two-photon absorption cross section in a confined geometry.

Wednesday, September 7, 2011

Quantum Simulation of Frustrated Classical Magnetism in Triangular Optical Lattices

      J. Struck, C. Ölschläger, R. Le Targat, P. Soltan-Panahi, A. Eckardt, M. Lewenstein, P. Windpassinger, K. Sengstock

  • Magnetism plays a key role in modern technology and stimulates research in several branches of condensed matter physics. Although the theory of classical magnetism is well developed, the demonstration of a widely tunable experimental system has remained an elusive goal. Here, we present the realization of a large-scale simulator for classical magnetism on a triangular lattice by exploiting the particular properties of a quantum system. We use the motional degrees of freedom of atoms trapped in an optical lattice to simulate a large variety of magnetic phases: ferromagnetic, antiferromagnetic, and even frustrated spin configurations. A rich phase diagram is revealed with different types of phase transitions. Our results provide a route to study highly debated phases like spin-liquids as well as the dynamics of quantum phase transitions.

Monday, September 5, 2011

Realization of an optomechanical interface between ultracold atoms and a membrane

      Stephan Camerer, Maria Korppi, Andreas Jockel, David Hunger, Theodor W. Hansch, Philipp Treutlein

      We have realized a hybrid optomechanical system by coupling ultracold atoms to a micromechanical membrane. The atoms are trapped in an optical lattice, which is formed by retro-reflection of a laser beam from the membrane surface. In this setup, the lattice laser light mediates an optomechanical coupling between membrane vibrations and atomic center-of-mass motion. We observe both the effect of the membrane vibrations onto the atoms as well as the backaction of the atomic motion onto the membrane. By coupling the membrane to laser-cooled atoms, we engineer the dissipation rate of the membrane. Our observations agree quantitatively with a simple model.

Thursday, August 18, 2011

Rydberg Excitations in Bose-Einstein Condensates in Quasi-One-Dimensional Potentials and Optical Lattices

      M Viteau, M.G. Bason, J. Radogostrowicz, N. Malossi, D. Ciampini, O. Morsch, and E. Arimondo
      We experimentally realize Rydberg excitations in Bose-Einstein condensates of rubidium atoms loaded into quasi-one-dimensional traps and in optical lattices. Our results for condensates expanded to different sizes in the one-dimensional trap agree well with the intuitive picture of a chain of Rydberg excitations. We also find that the Rydberg excitations in the optical lattice do not destroy the phase coherence of the condensate, and our results in that system agree with the picture of localized collective Rydberg excitations including nearest-neighbor blockade.

Monday, August 8, 2011

Vacuum Induced Transparency

Photons are excellent information carriers but normally pass through each other without consequence. Engineered interactions between photons would enable applications from quantum information processing to simulation of condensed matter systems. Using an ensemble of cold atoms strongly coupled to an optical cavity, we demonstrate experimentally that the transmission of light through a medium may be controlled with few photons and even by the electromagnetic vacuum field. The vacuum induces a group delay of 25 ns on the input optical pulse, corresponding to a light velocity of 1600 m/s, and a transparency of 40% that increases to 80% when the resonator is filled with 10 photons. This strongly nonlinear effect provides prospects for advanced quantum devices such as photon-number-state filters.

Tuesday, August 2, 2011

Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities

    • Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett & Erika Andersson
Quantum entanglement1, 2 plays a vital role in many quantum-information and communication tasks3. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref. 4 and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used5. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to d-dimensional systems6 up to d=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum7, generated through spontaneous parametric down-conversion8, 9, and manipulated using computer-controlled holograms.

Thursday, July 21, 2011

Measurement of the internal state of a single atom without energy exchange

  • Jürgen Volz, Roger Gehr, Guilhem Dubois, Jérôme Estève & Jakob Reichel
A measurement necessarily changes the quantum state being measured, a phenomenon known as back-action. Real measurements, however, almost always cause a much stronger back-action than is required by the laws of quantum mechanics. Quantum non-demolition measurements have been devised1, 2, 3, 4, 5, 6 that keep the additional back-action entirely within observables other than the one being measured. However, this back-action on other observables often imposes its own constraints. In particular, free-space optical detection methods for single atoms and ions (such as the shelving technique7, a sensitive and well-developed method) inevitably require spontaneous scattering, even in the dispersive regime8. This causes irreversible energy exchange (heating), which is a limitation in atom-based quantum information processing, where it obviates straightforward reuse of the qubit. No such energy exchange is required by quantum mechanics9. Here we experimentally demonstrate optical detection of an atomic qubit with significantly less than one spontaneous scattering event. We measure the transmission and reflection of an optical cavity10,11, 12, 13 containing the atom. In addition to the qubit detection itself, we quantitatively measure how much spontaneous scattering has occurred. This allows us to relate the information gained to the amount of spontaneous emission, and we obtain a detection error below 10 per cent while scattering less than 0.2 photons on average. Furthermore, we perform a quantum Zeno-type experiment to quantify the measurement back-action, and find that every incident photon leads to an almost complete state collapse. Together, these results constitute a full experimental characterization of a quantum measurement in the ‘energy exchange-free’ regime below a single spontaneous emission event. Besides its fundamental interest, this approach could significantly simplify proposed neutral-atom quantum computation schemes14, and may enable sensitive detection of molecules and atoms lacking closed transitions.

Optical Precursor of a Single Photon

Shanchao Zhang, J.F. Chen, Chang Liu, M.M.T Loy, G.K.L. Wong, Shengwang Du

We report the direct observation of optical precursors of heralded single photons with step- and square-modulated wave packets passing through cold atoms. Using electromagnetically induced transparency and the slow-light effect, we separate the single-photon precursor, which always travels at the speed of light in vacuum, from its delayed main wave packet. In the two-level superluminal medium, our result suggests that the causality holds for a single photon.

Thursday, May 26, 2011

Quantum annealing with manufactured spins

M. W. Johnson,M. H. S. Amin,S. Gildert,T. Lanting,F. Hamze,N. Dickson,R. Harris,A. J. Berkley,J. Johansson,P. Bunyk,E. M. Chapple,C. Enderud,J. P. Hilton,K. Karimi,E. Ladizinsky,N. Ladizinsky,T. Oh,I. Perminov,C. Rich,M. C. Thom,E. Tolkacheva,C. J. S. Truncik,S. Uchaikin,J. Wang,B. Wilson& G. Rose

Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins; however, finding such a ground state remains computationally difficult1. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing2, 3. If it could be harnessed, quantum annealing might improve on known methods for solving certain types of problem4, 5. However, physical investigation of quantum annealing has been largely confined to microscopic spins in condensed-matter systems6, 7, 8, 9, 10, 11, 12. Here we use quantum annealing to find the ground state of an artificial Ising spin system comprising an array of eight superconducting flux quantum bits with programmable spin–spin couplings. We observe a clear signature of quantum annealing, distinguishable from classical thermal annealing through the temperature dependence of the time at which the system dynamics freezes. Our implementation can be configured in situ to realize a wide variety of different spin networks, each of which can be monitored as it moves towards a low-energy configuration13, 14. This programmable artificial spin network bridges the gap between the theoretical study of ideal isolated spin networks and the experimental investigation of bulk magnetic samples. Moreover, with an increased number of spins, such a system may provide a practical physical means to implement a quantum algorithm, possibly allowing more-effective approaches to solving certain classes of hard combinatorial optimization problems.

Tuesday, May 24, 2011

Single-ion quantum lock-in amplifier

Shlomi Kotler, Nitzan Akerman, Yinnon Glickman, Anna Keselman & Roee Ozeri

Quantum metrology1 uses tools from quantum information science to improve measurement signal-to-noise ratios. The challenge is to increase sensitivity while reducing susceptibility to noise, tasks that are often in conflict. Lock-in measurement is a detection scheme designed to overcome this difficulty by spectrally separating signal from noise. Here we report on the implementation of a quantum analogue to the classical lock-in amplifier. All the lock-in operations—modulation, detection and mixing—are performed through the application of non-commuting quantum operators to the electronic spin state of a single, trapped Sr+ ion. We significantly increase its sensitivity to external fields while extending phase coherence by three orders of magnitude, to more than one second. Using this technique, we measure frequency shifts with a sensitivity of 0.42 Hz Hz−1/2 (corresponding to a magnetic field measurement sensitivity of 15 pT Hz−1/2), obtaining an uncertainty of less than 10 mHz (350 fT) after 3,720 seconds of averaging. These sensitivities are limited by quantum projection noise and improve on other single-spin probe technologies2, 3 by two orders of magnitude. Our reported sensitivity is sufficient for the measurement of parity non-conservation4, as well as the detection of the magnetic field of a single electronic spin one micrometre from an ion detector with nanometre resolution. As a first application, we perform light shift spectroscopy of a narrow optical quadrupole transition. Finally, we emphasize that the quantum lock-in technique is generic and can potentially enhance the sensitivity of any quantum sensor.

Thursday, May 12, 2011

Shortcut to adiabaticity for an interacting Bose-Einstein condensate

Jean-François Schaff, Xiao-Li Song, Pablo Capuzzi, Patrizia Vignolo, Guillaume Labeyrie

We present an investigation of the fast decompression of a three-dimensional (3D) Bose-Einstein condensate (BEC) at finite temperature using an engineered trajectory for the harmonic trapping potential. Taking advantage of the scaling invariance properties of the time-dependent Gross-Pitaevskii equation, we exhibit a solution yielding a final state identical to that obtained through a perfectly adiabatic transformation, in a much shorter time. Experimentally, we perform a large trap decompression and displacement within a time comparable to the final radial trapping period. By simultaneously monitoring the BEC and the non-condensed fraction, we demonstrate that our specific trap trajectory is valid both for a quantum interacting many-body system and a classical ensemble of non-interacting particles.

Self contained quantum heat engines

Noah Linden, Sandu Popescu, Paul Skrzypczyk

We construct the smallest possible self contained heat engines; one composed of only two qubits, the other of only a single qutrit. The engines are self-contained as they do not require external sources of work and/or control. They are able to produce work which is used to continuously lift a weight. Despite the dimension of the engine being small, it is still able to operate at the Carnot efficiency.

Thursday, April 28, 2011

Towards Quantum Chemistry On a Quantum Computer

B. P. Lanyon, J. D. Whitfield, G. G. Gillett, M. E. Goggin, M. P. Almeida, I. Kassal, J. D. Biamonte, M. Mohseni, B. J. Powell, M. Barbieri, A. Aspuru-Guzik & A. G. White

Exact first-principles calculations of molecular properties are currently intractable because their computational cost grows exponentially with both the number of atoms and basis set size. A solution is to move to a radically different model of computing by building a quantum computer, which is a device that uses quantum systems themselves to store and process data. Here we report the application of the latest photonic quantum computer technology to calculate properties of the smallest molecular system: the hydrogen molecule in a minimal basis. We calculate the complete energy spectrum to 20 bits of precision and discuss how the technique can be expanded to solve large-scale chemical problems that lie beyond the reach of modern supercomputers. These results represent an early practical step toward a powerful tool with a broad range of quantum-chemical applications.

Thursday, April 21, 2011

Spin Drag in a Perfect Fluid

Ariel Sommer, Mark Ku, Giacomo Roati, & Martin W. Zwierlein

Transport of fermions, particles with half-integer spin, is central to many fields of physics. Electron transport runs modern technology, defining states of matter such as superconductors and insulators, and electron spin is being explored as a new carrier of information1. Neutrino transport energizes supernova explosions following the collapse of a dying star2, and hydrodynamic transport of the quark–gluon plasma governed the expansion of the early Universe3. However, our understanding of non-equilibrium dynamics in such strongly interacting fermionic matter is still limited. Ultracold gases of fermionic atoms realize a pristine model for such systems and can be studied in real time with the precision of atomic physics4. Even above the superfluid transition, such gases flow as an almost perfect fluid with very low viscosity when interactions are tuned to a scattering resonance3, 5, 6, 7, 8. In this hydrodynamic regime, collective density excitations are weakly damped6, 7. Here we experimentally investigate spin excitations in a Fermi gas of 6Li atoms, finding that, in contrast, they are maximally damped. A spin current is induced by spatially separating two spin components and observing their evolution in an external trapping potential. We demonstrate that interactions can be strong enough to reverse spin currents, with components of opposite spin reflecting off each other. Near equilibrium, we obtain the spin drag coefficient, the spin diffusivity and the spin susceptibility as a function of temperature on resonance and show that they obey universal laws at high temperatures. In the degenerate regime, the spin diffusivity approaches a value set by planck/m, the quantum limit of diffusion, where planck/m is Planck’s constant divided by 2π and m the atomic mass. For repulsive interactions, our measurements seem to exclude a metastable ferromagnetic state9, 10, 11.

Sunday, April 17, 2011

A Single-Atom Quantum Memory

Holger P. Specht, Christian Nölleke, Andreas Reiserer, Manuel Uphoff, Eden Figueroa, Stephan Ritter, Gerhard Rempe

The faithful storage of a quantum bit of light is essential for long-distance quantum communication, quantum networking and distributed quantum computing. The required optical quantum memory must, first, be able to receive and recreate the photonic qubit and, second, store an unknown quantum state of light better than any classical device. These two requirements have so far been met only by ensembles of material particles storing the information in collective excitations. Recent developments, however, have paved the way for a new approach in which the information exchange happens between single quanta of light and matter. This single-particle approach allows one to address the material qubit and thus has fundamental advantages for realistic implementations: First, to combat inevitable losses and finite efficiencies, it enables a heralding mechanism that signals the successful storage of a photon by means of state detection. Second, it allows for individual qubit manipulations, opening up avenues for in situ processing of the stored quantum information. Here we demonstrate the most fundamental implementation of such a quantum memory by mapping arbitrary polarization states of light into and out of a single atom trapped inside an optical cavity. The memory performance is analyzed through full quantum process tomography. The average fidelity is measured to be 93% and low decoherence rates result in storage times exceeding 180\mu s. This makes our system a versatile quantum node with excellent perspectives for optical quantum gates and quantum repeaters.

Thursday, March 24, 2011

Quantum ground state and single-phonon control of a mechanical resonator

A. D. O’Connell, M. Hofheinz, M. Ansmann, Radoslaw C. Bialczak, M. Lenander, Erik Lucero, M. Neeley, D. Sank, H. Wang, M. Weides, J. Wenner, John M. Martinis & A. N. Cleland

Quantum mechanics provides a highly accurate description of a wide variety of physical systems. However, a demonstration that quantum mechanics applies equally to macroscopic mechanical systems has been a long-standing challenge, hindered by the difficulty of cooling a mechanical mode to its quantum ground state. The temperatures required are typically far below those attainable with standard cryogenic methods, so significant effort has been devoted to developing alternative cooling techniques. Once in the ground state, quantum-limited measurements must then be demonstrated. Here, using conventional cryogenic refrigeration, we show that we can cool a mechanical mode to its quantum ground state by using a microwave-frequency mechanical oscillator—a ‘quantum drum’—coupled to a quantum bit, which is used to measure the quantum state of the resonator. We further show that we can controllably create single quantum excitations (phonons) in the resonator, thus taking the first steps to complete quantum control of a mechanical system.

Monday, March 21, 2011

Efficient Measurement of Quantum Dynamics via Compressive Sensing

A. Shabani, R. L. Kosut, M. Mohseni, H. Rabitz, M. A. Broome, M. P. Almeida, A. Fedrizzi, and A. G. White

The resources required to characterize the dynamics of engineered quantum systems—such as quantum computers and quantum sensors—grow exponentially with system size. Here we adapt techniques from compressive sensing to exponentially reduce the experimental configurations required for quantum process tomography. Our method is applicable to processes that are nearly sparse in a certain basis and can be implemented using only single-body preparations and measurements. We perform efficient, high-fidelity estimation of process matrices of a photonic two-qubit logic gate. The database is obtained under various decoherence strengths. Our technique is both accurate and noise robust, thus removing a key roadblock to the development and scaling of quantum technologies.

Friday, March 11, 2011

Making optical atomic clocks more stable with 10^−16-level laser stabilization

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma & C. W. Oates

The superb precision of an atomic clock is derived from its stability. Atomic clocks based on optical (rather than microwave) frequencies are attractive because of their potential for high stability, which scales with operational frequency. Nevertheless, optical clocks have not yet realized this vast potential, due in large part to limitations of the laser used to excite the atomic resonance. To address this problem, we demonstrate a cavity-stabilized laser system with a reduced thermal noise floor, exhibiting a fractional frequency instability of 2 × 10−16. We use this laser as a stable optical source in a ytterbium optical lattice clock to resolve an ultranarrow 1 Hz linewidth for the 518 THz clock transition. With the stable laser source and the signal-to-noise ratio afforded by the ytterbium optical clock, we dramatically reduce key stability limitations of the clock, and make measurements consistent with a clock instability of 5 × 10−16 .

Friday, March 4, 2011

Itinerant Ferromagnetism in Ultracold Fermions

Gyu-Boong Jo, Ye-Ryoung Lee, Jae-Hoon Choi, Caleb A. Christensen, Tony H. Kim, Joseph H. Thywissen, David E. Pritchard and Wolfgang Ketterle

Can a gas of spin-up and spin-down fermions become ferromagnetic because of repulsive interactions? We addressed this question, for which there is not yet a definitive theoretical answer, in an experiment with an ultracold two-component Fermi gas. The observation of nonmonotonic behavior of lifetime, kinetic energy, and size for increasing repulsive interactions provides strong evidence for a phase transition to a ferromagnetic state. Our observations imply that itinerant ferromagnetism of delocalized fermions is possible without lattice and band structure, and our data validate the most basic model for ferromagnetism introduced by Stoner.

Wednesday, February 23, 2011

Broadband waveguide quantum memory for entangled photons

Erhan Saglamyurek, Neil Sinclair, Jeongwan Jin, Joshua A. Slater, Daniel Oblak, Félix Bussières, Mathew George, Raimund Ricken, Wolfgang Sohler & Wolfgang Tittel

The reversible transfer of quantum states of light into and out of matter constitutes an important building block for future applications of quantum communication: it will allow the synchronization of quantum information1, and the construction of quantum repeaters2 and quantum networks3. Much effort has been devoted to the development of such quantum memories1, the key property of which is the preservation of entanglement during storage. Here we report the reversible transfer of photon–photon entanglement into entanglement between a photon and a collective atomic excitation in a solid-state device. Towards this end, we employ a thulium-doped lithium niobate waveguide in conjunction with a photon-echo quantum memory protocol4, and increase the spectral acceptance from the current maximum5 of 100megahertz to 5gigahertz. We assess the entanglement-preserving nature of our storage device through Bell inequality violations6 and by comparing the amount of entanglement contained in the detected photon pairs before and after the reversible transfer. These measurements show, within statistical error, a perfect mapping process. Our broadband quantum memory complements the family of robust, integrated lithium niobate devices7. It simplifies frequency-matching of light with matter interfaces in advanced applications of quantum communication, bringing fully quantum-enabled networks a step closer.

Tuesday, February 15, 2011

Evidence for orbital superfluidity in the P-band of a bipartite optical square lattice

Georg Wirth, Matthias Ölschläger & Andreas Hemmerich

The successful emulation of the Hubbard model in optical lattices has stimulated extensive efforts to extend their scope to also capture more complex, incompletely understood scenarios of many-body physics. A promising approach is to consider higher bands, where the orbital degree of freedom gives rise to a structural diversity that is directly relevant, for example, for the physics of strongly correlated electronic matter. Here we report evidence for the formation of a superfluid in the P-band of a bipartite optical square lattice with S-orbits and P-orbits arranged in a chequerboard pattern. The observed momentum spectra feature cross-dimensional coherence with a lifetime of nearly 20ms. Depending on the value of a small adjustable anisotropy of the lattice, our findings are explained either by real-valued striped superfluid order parameters with different orientations Px±Py, or by a complex-valued Px±iPy order parameter, which breaks time-reversal symmetry.

Thursday, February 3, 2011

The uncertainty principle in the presence of quantum memory

Mario Berta, Matthias Christandl,Roger Colbeck,Joseph M. Renes & Renato Renner

The uncertainty principle, originally formulated by Heisenberg1, clearly illustrates the difference between classical and quantum mechanics. The principle bounds the uncertainties about the outcomes of two incompatible measurements, such as position and momentum, on a particle. It implies that one cannot predict the outcomes for both possible choices of measurement to arbitrary precision, even if information about the preparation of the particle is available in a classical memory. However, if the particle is prepared entangled with a quantum memory, a device that might be available in the not-too-distant future2, it is possible to predict the outcomes for both measurement choices precisely. Here, we extend the uncertainty principle to incorporate this case, providing a lower bound on the uncertainties, which depends on the amount of entanglement between the particle and the quantum memory. We detail the application of our result to witnessing entanglement and to quantum key distribution.

Thursday, January 27, 2011

Near-deterministic preparation of a single atom in an optical microtrap

*T. Grünzweig,*A. Hilliard,*M. McGovern*& M. F. Andersen

Neutral atoms stored in optical traps are strong candidates for a physical realization of a quantum logic device1, 2. Far off-resonance optical traps provide conservative potentials and excellent isolation from the environment, and they may be arranged to produce arbitrary arrays of traps, where each trap is occupied by a single atom that can be individually addressed3, 4, 5, 6. At present, significant effort is being expended on developing two-qubit gates based on coupling individual Rydberg atoms in adjacent optical microtraps7, 8, 9. A major challenge associated with this approach is the reliable generation of single-atom occupancy in each trap, as the loading efficiency in the past experiments has been limited to 50% (refs 4, 7, 8, 10, 11, 12). Here we report a loading efficiency of 82.7% in an optical microtrap. We achieve this by manipulating the collisions between pairs of trapped atoms through tailored optical fields and directly observing the resulting single atoms in the trap.

Monday, January 24, 2011

Optomechanically Induced Transparency

Stefan Weis, Rémi Rivière, Samuel Deléglise1, Emanuel Gavartin1, Olivier Arcizet3, Albert Schliesser and Tobias J. Kippenberg

Electromagnetically induced transparency is a quantum interference effect observed in atoms and molecules, in which the optical response of an atomic medium is controlled by an electromagnetic field. We demonstrated a form of induced transparency enabled by radiation-pressure coupling of an optical and a mechanical mode. A control optical beam tuned to a sideband transition of a micro-optomechanical system leads to destructive interference for the excitation of an intracavity probe field, inducing a tunable transparency window for the probe beam. Optomechanically induced transparency may be used for slowing and on-chip storage of light pulses via microfabricated optomechanical arrays.

Spin Hall Effect Transistor

Jörg Wunderlich, Byong-Guk Park, Andrew C. Irvine, Liviu P. Zârbo, Eva Rozkotová, Petr Nemec, Vít Novák, Jairo Sinova and Tomás Jungwirth

The field of semiconductor spintronics explores spin-related quantum relativistic phenomena in solid-state systems. Spin transistors and spin Hall effects have been two separate leading directions of research in this field. We have combined the two directions by realizing an all-semiconductor spin Hall effect transistor. The device uses diffusive transport and operates without electrical current in the active part of the transistor. We demonstrate a spin AND logic function in a semiconductor channel with two gates. Our study shows the utility of the spin Hall effect in a microelectronic device geometry, realizes the spin transistor with electrical detection directly along the gated semiconductor channel, and provides an experimental tool for exploring spin Hall and spin precession phenomena in an electrically tunable semiconductor layer.