Mario A. Usuga, Christian R. Mueller, Christoffer Wittmann, Petr Marek, Radim Filip, Christoph Marquardt, Gerd Leuchs, Ulrik L. Andersen
Phase insensitive optical amplification of an unknown quantum state is known to be a fundamentally noisy operation that inevitably adds noise to the amplified state [1 - 5]. However, this fundamental noise penalty in amplification can be circumvented by resorting to a probabilistic scheme as recently proposed and demonstrated in refs [6 - 8]. These amplifiers are based on highly non-classical resources in a complex interferometer. Here we demonstrate a probabilistic quantum amplifier beating the fundamental quantum limit utilizing a thermal noise source and a photon number subtraction scheme [9]. The experiment shows, surprisingly, that the addition of incoherent noise leads to a noiselessly amplified output state with a phase uncertainty below the uncertainty of the state prior to amplification. This amplifier might become a valuable quantum tool in future quantum metrological schemes and quantum communication protocols.
Sunday, July 18, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment